THE ELASTIC EQUILIBRIUM OF A HYPERBOLOID OF REVOLUTION OF ONE
 SHEET WITH PRESCRIBED DISPLACEMENTS AT THE BOUNDARY

PMM Vol. 35, No. 4, 1971, pp. 729-734
B. A. VASIL'EV
(Leningrad)
(Received January 22, 1970)
The solution of the second fundamental problem of the theory of elasticity is obtained for a hyperboloid of revolution of one sheet. As an example we solve the problem of elastic deformation under the action of a concentrated axial force situated at the center of symmetry of the hyperboloid, under the assumption that the boundary surface is rigidly fixed.

It is proved in [1] that by using oblate spheroidal coordinates and the generalized Mehler-Fock integral expansion, one can obtain the solution of the fundamental problems of the mathematical theory of elasticity for domains bounded by a hyperboloid of revolution of two sheets. In the present paper similar results are obtained for the case of a hyperboloid of revolution of one sheet by using integral expansions with respect to spherical functions which have been considered in [2,3]. The characteristic property of these expansions is the presence of a discrete part in the spectrum of the eigenvalues and therefore in the expansion of an arbitrary function there exists a finite algebraic sum together with the integral.

1. We consider particular solutions of the equations of the theory of elasticity [1]

$$
\begin{equation*}
\frac{1}{1-2 \mu} \operatorname{grad} \operatorname{div} \mathbf{u}+\Delta u=0, \quad \mathbf{u}=\mathrm{i} u+j v+\mathbf{k} w \tag{1.1}
\end{equation*}
$$

Here \mathbf{u} is the displacement vector and μ is Poisson's ratio.
The first two solutions obtained from the equations

$$
\begin{equation*}
\Delta u=0, \quad \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \tag{1.2}
\end{equation*}
$$

The third solution is constructed with the help of the vector potential B

$$
\begin{align*}
& \mathbf{u}=\frac{1}{2 G}[4(1-\mu) B-\operatorname{grad}(\mathrm{r} \cdot \mathrm{~B})] \tag{1.3}\\
& \mathrm{B}=-B_{x} \mathrm{i}+B_{y} \mathrm{j}+B_{z} \mathrm{k}, \quad \Delta \mathrm{~B}=0
\end{align*}
$$

Here G is the modulus of elasticity.
To solve Eqs. (1.2),(1.3), we make use of the oblate spheroidal coordinates, which are defined by the equations [4]

$$
\begin{gather*}
x=c \operatorname{ch} \alpha \sin \beta \cos \varphi, \quad y=c \operatorname{ch} \alpha \sin \beta \sin \varphi . \quad z=c \operatorname{sh} \alpha \cos \beta \tag{1.4}\\
\left(-\infty<\alpha<+\infty, \quad 0<\beta<\beta_{0}, \quad-\pi<\varphi \leqslant+\pi\right)
\end{gather*}
$$

The totality of particular solutions of Laplace's equation which are appropriate for the examination of boundary value problems where the boundary conditions are given on the surface of a hyperboloid of one sheet, is of the form [5]

$$
\begin{gather*}
u=u_{v m}=\begin{array}{l}
\varphi_{v}^{m}(\operatorname{sh} \alpha) \\
\psi_{v}^{m}(\mathrm{sh} \alpha)
\end{array} P_{v}^{-m}(\cos \beta)\left[M_{m}(v) \cos m \varphi+N_{m}(v) \sin m \varphi\right] \tag{1.5}\\
\varphi_{v}^{m}(x)=1 / 2\left[e^{\mp} / / i^{i \pi m} P_{v}^{-m}(i x)+e^{ \pm 1 / 2 \pi m} P_{v}^{-m}(-i x)\right] \quad(x \gtrless 0) \\
\psi_{v}^{m}(x)=-1 / 2 i\left[e^{\mp 1 / 2 \pi m} P_{v}^{-m}(i x)-e^{ \pm 1 / 2 \pi m} P_{v}^{-m}(-i x)\right] \quad(x \gtrless 0) \\
(m=0,1,2,3, \ldots)
\end{gather*}
$$

Here the parameter v has a continuous and a discrete spectrum, while $\varphi_{v}{ }^{m}(x)$ and $\psi_{v}{ }^{m}(x)$ are, respectively, the even and odd combination of spherical functions with imaginary arguments [3].
2. As it follows from (1.2), (1.3), Eq.(1.1) reduces to Laplace's equation for each component of the vectors u and B.

The particular solutions (1.5) of Laplace's equation admit four kinds of solutions, differing by the type of symmetry with respect to the angle φ and the variable α. For the sake of simplicity, we consider only the case of displacements w which are symmetric with respect to the planez $=0$ and the plane $\varphi=0$.In this case, the solution of Eqs. $(1,2$) can be obtained by the superposition of particular solutions of the form

$$
\begin{gather*}
u_{v m}^{(1)}=a_{m}(v) \psi_{v}^{m-1}(\operatorname{sh} \alpha) P_{v}^{-m+1}(\cos \beta) \cos (m-1) \varphi \tag{2.1}\\
v_{v m}^{(1)}=-a_{m}(v) \psi_{v}^{m-1}(\operatorname{sh} \alpha) P_{v}^{-m+1}(\cos \beta) \sin (m-1) \varphi \\
w_{v m}^{(1)}=a_{m}(v)(v+m)(v-m+1) \varphi_{v}^{m}(\operatorname{sh} \alpha) P_{v}^{-m}(\cos \beta) \cos m \varphi \\
(m=1,2,3, \ldots) \\
u_{v m}^{(2)}=b_{m}(v)(v-m)(v+m+1) \psi_{v}^{m+1}(\mathrm{sh} \alpha) P_{v}^{-m-1}(\cos \beta) \cos (m+1) \varphi \\
v_{v m}^{(2)}=b_{m}(v)(v-m)(v+m+1) \psi_{v}^{m+1}(\operatorname{sh} \alpha) P_{v}^{-m-1}(\cos \beta) \sin (m+1) \varphi \tag{2.2}\\
w_{v m}^{(2)}=b_{m}(v) \varphi_{v}^{m}(\operatorname{sh} \alpha) P_{v}^{-m}(\cos \beta) \cos m \varphi
\end{gather*}
$$

To construct the solutions (2.1), (2.2) it is necessary to make use of the recursion relations

$$
\begin{gather*}
\frac{d \varphi_{v}{ }^{m}}{d x}=-\frac{m x}{x^{2}+1} \varphi_{v}{ }^{m}+\frac{1}{\sqrt{x^{2}+1}} \psi_{v}^{m-1} \\
\frac{d \varphi_{v}{ }^{m}}{d x}=\frac{m x}{x^{2}+1} \varphi_{v}{ }^{m}-\frac{(v-m)(v+m+1)}{\sqrt{x^{2}+1}} \psi_{v}^{m+1} \tag{2.3}\\
\frac{d \psi_{v}{ }^{m}}{d x}=-\frac{m x}{x^{2}+1} \psi_{v}{ }^{m}-\frac{1}{\sqrt{x^{2}+1}} \varphi_{v}^{m-1} \\
\frac{d \psi_{v}{ }^{m}}{d x}=\frac{m x}{x^{2}+1} \psi_{v}{ }^{m}+\frac{(v-m)(v+m+1)}{\sqrt{x^{2}+1}} \varphi_{v}^{m+1}
\end{gather*}
$$

The components of the vector potential \mathbf{B} are obtained by the superposition of particular solutions of the form

$$
\begin{align*}
& D_{z v \mathrm{vm}}=-c_{\mathrm{rm}}(v)(v-m)(v+m+1) \psi_{v}^{m+1}(\operatorname{sh} \alpha) P_{v}^{-m-1}(\cos \beta) \cos (m+1) \varphi \tag{2.4}\\
& B_{b, m}=-c_{m}(v)(v-m)(v+m+1) \psi_{v}^{m+1}(\operatorname{sh} \alpha) P_{v}^{-m-1}(\cos \beta) \sin (m+1) \varphi \\
& E_{2, m}=c_{m}(v) \operatorname{tg}^{2} \beta_{0} \varphi(\operatorname{sh} \alpha) P_{v}^{-m}(\cos \beta) \cos m \varphi \quad(m=0,1,2, \ldots)
\end{align*}
$$

Substituting (2.4) into (1.3) we obtain for the components of the displacement vector at the boundary $\beta=\beta_{0}$

$$
\begin{align*}
& \begin{array}{l}
u_{v m}^{(3)}=-c_{m}(v)(v-m)(v+m+1) \lambda_{m}(v) \psi_{v}^{m+1}(\operatorname{sL} \alpha){ }_{v i n}^{\cos (m+1) \varphi} \mp \quad \sin (m+1) \varphi
\end{array} \\
& \mp 1 / 2 \operatorname{tg} 1 / 2 \beta \beta_{m}(v) \psi_{v}^{m-1}(\operatorname{sh} \alpha) \begin{array}{l}
\cos (m-1) \varphi \\
\sin (m-1) \varphi
\end{array} \\
& w_{v m}^{(3)}=c_{m}(v) \lambda_{m}{ }^{\prime}(v) \varphi_{v}{ }^{\prime \prime}(\operatorname{sh} \alpha) \cos m \varphi \tag{2.5}\\
& \lambda_{m}(v)=(3-4 \mu) P_{v}^{-m-1}\left(\cos \beta_{0}\right)+1 / 2 \operatorname{tg} \beta_{0}(v+m+2)(v-m-1) P_{v}^{-m-2}\left(\cos \beta_{0}\right) \\
& \lambda_{m}{ }^{\prime}(v)=\operatorname{tg}^{2} \beta_{0}(3-4 \mu) p_{v}^{-m}\left(\cos \beta_{0}\right)-\operatorname{tg} \beta_{0}(v+m+1)(v-m) P_{v}^{-m-1}\left(\cos \beta_{0}\right) \\
& \text { (} m=0,1,2, \ldots \text {) } \\
& v=v_{\tau}=i \tau-1 / 2 \quad(0<\tau<\infty) \\
& v=v_{n}=m-2 n-1 \quad\left(n^{\prime}=0 ; 1,2, \ldots, n^{*}\right), \quad n^{*}=[1 / 2(m-1)] \quad(m=1,2,3, \ldots)
\end{align*}
$$

Thus, the components of the displacement vectors at the boundary $\beta=\beta_{0}$ can be written in the form [3]

$$
\begin{align*}
& u_{\varphi}^{u_{\varphi}^{(1)}}=\sum_{m=1}^{\infty}\left\{\int_{0}^{\infty} a_{m}^{(1)}(\tau) \Psi_{i \tau-1 / 2}^{m-1}(\operatorname{sh} \alpha) P_{i \tau-1 /,}^{-m+1}\left(\cos \beta_{0}\right) d \tau\right\}-\sin m \varphi+ \\
& +\sum_{m=3}^{\infty}\left\{\sum_{n=0}^{n^{*}} \alpha_{m n} \psi_{m-2 n-1}^{m-1}(\sin \alpha) P_{m-2 n-1}^{-m-1}\left(\cos \beta_{0}\right)\right\}^{\left.\begin{array}{r}
\cos m \varphi \\
-\sin m \varphi
\end{array}\right]} \tag{2.6}\\
& w^{(1)}=-\sum_{m=1}^{\infty}\left\{\int_{0}^{\infty} a_{m^{\prime}}(\tau)\left[\tau^{2}+\left(m-\frac{1}{2}\right)^{2}\right] \varphi_{i \tau-1 / 2}^{m}(\operatorname{sh} \alpha) P_{i \tau-1 / 2}^{-m}\left(\cos \beta_{0}\right) d \tau\right\} \times \\
& \times \cos m \varphi+\sum_{m=3}^{\infty}\left\{\sum_{n=0}^{n^{*}} \alpha_{m n} 2 n(2 n+1-2 m) \varphi_{m-2 n-1}^{m}(\operatorname{sh} \alpha) p_{m-2 n-1}^{-m}\left(\cos \beta_{0}\right)\right\} \cos m \varphi \\
& u_{\rho}^{(2)}=-\sum_{m=0}^{\infty}\left\{\int_{0}^{\infty} b_{m}^{(2)}(\tau)\left[\tau^{2}+\left(m+\frac{1}{2}\right)^{2}\right] \psi_{i \tau-1 / 2}^{m+1}(\operatorname{sh} \alpha) P_{i:-1 / 4}^{-m-1}\left(\cos \beta_{0}\right) d \tau\right\}_{\sin m \varphi}^{\cos m \varphi}+ \\
& +\sum_{m=1}^{\infty}\left\{\sum_{n=0}^{n^{*}} \beta_{m n}(2 n+1)(2 n-2 m) \psi_{m-2 n-1}^{m+1}(\operatorname{sh} \alpha) P_{m-2 n-1}^{-m-1}\left(\cos \beta_{0}\right)\right\}_{\sin m \varphi}^{\cos m \varphi} \tag{2.7}\\
& w^{(2)}=\sum_{m=0}^{\infty}\left\{\int_{0}^{\infty} b_{m}(\tau) \varphi_{i \tau-1 / s}^{m}(\operatorname{sh} \alpha) P_{i \tau-1 / 2}^{-m}\left(\cos \beta_{0}\right) d \tau\right\} \cos m \varphi+ \\
& +\sum_{m=1}^{\infty}\left\{\sum_{n=0}^{n^{*}} \beta_{m n} \varphi_{m-2 n-1}^{m}(\operatorname{sh} \alpha) P_{m-2 n-1}^{-m}\left(\cos \beta_{0}\right)\right\} \cos m \varphi \tag{2.8}\\
& u_{\varphi}^{u_{\rho}^{(3)}}=\sum_{m=0}^{\infty}\left\{\int_{0}^{\infty} c_{m}^{\infty}(\tau)\left[\tau^{2}+\left(m+\frac{1}{2}\right)^{2}\right] \lambda_{m}\left(v_{\tau}\right) \psi_{i \tau-1 / 2}^{m+1}(\operatorname{sh} \alpha) d \tau\right\}_{\sin m \varphi}^{\cos m \varphi}+ \\
& +\sum_{m=1}^{\infty}\left\{\sum_{n=0}^{n^{*}} Y_{m n}(2 n+1)(2 m-2 n) \lambda_{m}\left(v_{n}\right) \psi_{m-2 n-1}^{m+1}(\text { sh } \alpha)\right\}_{\sin m \varphi}^{\cos m \varphi} \mp
\end{align*}
$$

$$
\begin{gather*}
\mp \frac{1}{2} \operatorname{tg} \frac{1}{2} \beta_{0} \sum_{m=0}^{\infty}\left\{\int_{0}^{\infty} c_{m}(\tau) \psi_{i \tau-1 / 2}^{m-1}(\operatorname{sh} \alpha) P_{i \tau-1 / 2}^{-m}\left(\cos \beta_{0}\right) d \tau\right\}_{\sin m \varphi}^{\cos m \varphi} \mp \\
\mp \frac{1}{2} \operatorname{tg} \frac{1}{2} \beta_{0} \sum_{m=3}^{\infty}\left\{\sum_{n=0}^{n^{*}} \gamma_{m n} \psi_{m-2 n-1}^{m-1}(\operatorname{sh} \alpha) P_{m-2 n-1}^{-m}\left(\cos \beta_{0}\right)\right\}_{\sin m \varphi}^{\cos m \varphi} \\
w_{3}=\sum_{m=0}^{\infty}\left\{\int_{0}^{\infty} c_{m}(\tau) \lambda_{m}^{\prime}\left(v_{\tau}\right) \varphi_{i \tau-1 / 2}^{m}(\operatorname{sh} \alpha) d \tau\right\} \cos m \varphi+ \\
+\sum_{m=1}^{\infty}\left\{\sum_{n=0}^{n^{*}} \gamma_{m n} \varphi_{m-2 n-1}^{m}(\operatorname{sh} \alpha) \lambda_{m}^{\prime}\left(v_{n}\right)\right\} \cos m \varphi \\
\psi_{m}^{m}(x) \equiv 0 \quad(m=1,2,3, \ldots) \tag{2.8}
\end{gather*}
$$

3. To solve the second fundamental problem of the theory of elasticity, we will consider taking into account the particular solutions (2.6)-(2.8), that the displacement vector at the boundary $\beta=\beta_{0}$ is given in the cylindrical system of coordinates ρ, φ, z

$$
\begin{gather*}
u_{p}=\sum_{m=0}^{\infty} A_{m}(\alpha) \cos m \varphi, \quad u_{\varphi}=\sum_{m=1}^{\infty} B_{m}(\alpha) \sin m \varphi \\
w=\sum_{m=0}^{\infty} D_{m}(\alpha) \cos m \varphi \tag{3.1}
\end{gather*}
$$

Here $A_{m}(\alpha)$ and $B_{m}(\alpha)$ are odd functions while $D_{m}(\alpha)$ is an even function of α. We introduce the auxiliary functions

$$
\begin{gathered}
f_{m}^{(+)}(\alpha)=1 / 2\left[A_{m}(\alpha)+B_{m}(\alpha)\right], \quad f_{m}^{(-)}(\alpha)=1 / 2\left[A_{m}(\alpha)-B_{m}(\alpha)\right] \\
(m=1,2,3, \ldots)
\end{gathered}
$$

The functions (3.1), (3.2) must satisfy the conditions of the expansion theorem [3]

$$
\begin{align*}
& f_{m}^{(\pm)}(\alpha)=\int_{0}^{\infty} \bar{f}_{m}^{(\pm)}(\tau) \psi_{i \tau-1 / 2}^{m \pm \pm 1}(\operatorname{sh} \alpha) d \tau+\sum_{n=0}^{n^{*}} f_{m n}^{(\pm)} \psi_{m-2 n-1}^{m \pm 1}(\operatorname{sh} \alpha) \tag{3.3}\\
& D_{m}(\alpha)=\int_{0}^{\infty} \bar{D}_{m}(\tau) \varphi_{i \tau-1 / 2}^{m}(\operatorname{sh} \alpha) d \tau+\sum_{n=0}^{n^{*}} \bar{D}_{m n} \varphi_{m-2 n-1}^{m}(\operatorname{sh} \alpha)
\end{align*}
$$

Equating (3.1) with the solutions (2.6)-(2.8) at the boundary $\beta=\beta_{0}$, from (3.2) we obtain for the coefficients $a_{m}(\tau) b_{m}(\tau), c_{m}(\tau)$ the system of algebraic equations

$$
\begin{gathered}
a_{m}(\tau) P_{i \tau-1 / 2}^{-m+1}\left(\cos \beta_{0}\right)-1 / 2 c_{m}(\tau) \operatorname{tg} 1 / 2 \beta_{0} P_{i \tau-1 / 2}^{m}\left(\cos \beta_{0}\right)=\bar{f}_{m}^{(-)}(\tau) \\
c_{m}(\tau) \lambda_{m}\left(v_{\tau}\right)-b_{m}(\tau) P_{i \tau-1 / 2}^{-m-1}\left(\cos \beta_{0}\right)=\bar{f}_{m}^{(+)}(\tau)\left[\tau^{2}+(m+1 / 2)^{2}\right]^{-1} \\
a_{m}(\tau)\left[\tau^{2}+(m-1 / 2)^{2}\right] P_{i \tau-1 / 2}^{-m}\left(\cos \beta_{0}\right)+b_{m}(\tau) P_{i \tau-1 /,}^{-m}\left(\cos \beta_{0}\right)+c_{m}(\tau) \lambda_{m}^{\prime}\left(v_{\tau}\right)=\bar{D}_{m}(\tau) \\
(m=1,2,3, \ldots)
\end{gathered}
$$

To determine the numbers $\alpha_{m n}, \beta_{m n}, \gamma_{m n}$ we have the system of algebraic equations

$$
\begin{gather*}
\alpha_{m n} P_{m-2 n-1}^{-m+1}\left(\cos \beta_{n}\right)^{(m}-1 / 2 \gamma_{m n} \operatorname{tg} 1 / 2 \beta_{0} P_{m-2 n-1}^{-m}\left(\cos \beta_{0}\right)=\bar{f}_{m n}^{(-)} \tag{3.5}\\
\gamma_{m n} \lambda_{m}\left(v_{n}\right)-\beta_{m n} P_{m-2 n-1}^{-m}\left(\cos \beta_{0}\right)=(2 n+1)^{-1}(2 m-2 n)^{-1} \bar{f}_{m n}^{(+)} \\
\alpha_{m n} 2 n(2 n+1-2 m)+\beta_{m n} P_{m-2 n-1}^{-m}\left(\cos \beta_{0}\right)+\gamma_{m n} \lambda_{m}^{\prime}\left(v_{n}\right)=\bar{D}_{m n} \\
(n=1,2,3, \ldots\{1 / 2(m-1)\rceil ; \quad n-3,4,5, \ldots)
\end{gather*}
$$

For the case $n=0$ the system of algebraic equations can be written in the form

$$
\begin{array}{ll}
\gamma_{m 0} \lambda_{m}\left(v_{0}\right)-\beta_{m 0} P_{m-1}^{-m-1}\left(\cos \beta_{0}\right)=\bar{f}_{m 0}^{(+)} & \binom{v_{0}=m-1}{m=1,2, \ldots} \tag{3.6}\\
\gamma_{m 0} \lambda_{m}^{\prime}\left(v_{0}\right)+\beta_{m 0} P_{m-1}^{-m}\left(\cos \beta_{0}\right)=\bar{D}_{m 0} &
\end{array}
$$

4. We consider the case of the axial symmetry of the boundary conditions. In this case $m=0$ and the expansions (2.6)-(2.8) have only integral terms. In addition, by virtue of (2.3), the solutions (2.1), (2.2) cease to be linearly independent and it is necessary to put $a_{0}(\tau)=0$.From the solutions (2.2), (2.5) it is easy to obtain the components of the displacement vector at the boundary $\beta=\beta_{0}$

$$
\begin{gathered}
u_{p}=\int_{0}^{\infty}\left(\tau^{2}+\frac{1}{4}\right)\left[c_{0}(\tau) \lambda_{n}(\tau)-b_{0}(\tau) P_{i \tau-1 / 2}^{-1}\left(\cos \beta_{0}\right)\right] \psi_{i \tau-1 / 4}^{1}(\operatorname{sh} a) d \tau \\
w=\int_{0}^{\infty}\left[c_{0}(\tau) \lambda_{0}^{\prime}(\tau)+b_{0}(\tau) P_{i \tau-1 / 4}\left(\cos \beta_{0}\right)\right] \varphi_{i \tau-1 / s}(\operatorname{sh} \alpha) d \tau
\end{gathered}
$$

Here

$$
\begin{gathered}
\lambda_{0}(\tau)=(3-4 \mu) P_{i \tau-1 / 2}^{-1}\left(\cos \beta_{0}\right)-1 / 2 \operatorname{tg} 1 / 8 \beta_{0} \times \\
\times\left[P_{i \tau-1 / 2}\left(\cos \beta_{0}\right)-\left(\tau^{2}+\frac{9}{4}\right) P_{i \tau-1 / 2}^{-2}\left(\cos \beta_{0}\right)\right] \\
\lambda_{0}^{\prime}(\tau)=\operatorname{tg}^{2} \beta_{0}(3-4 \mu) P_{i \tau-1 / 8}\left(\cos \beta_{0}\right)+\operatorname{tg} \beta_{0}\left(\tau^{2}+1 / 4\right) P_{i \tau-1 / 2}^{-1}\left(\cos \beta_{0}\right)
\end{gathered}
$$

Substituting (4.1) into the boundary conditions (3.1) and making use of the expansion (3.3), we obtain a system of algebraic equations for the determination of the coefficients $b_{0}(\tau), c_{0}(\tau)$

$$
\begin{gather*}
c_{0}(\tau) \lambda_{0}(\tau)-b_{0}(\tau) P_{i \tau-1 / 2}^{-1}\left(\cos \beta_{0}\right)=\left(\tau^{2}+1 /\right)^{-1} A_{0}(\tau) \tag{4.2}\\
c_{0}(\tau) \lambda_{0}^{\prime}(\tau)+b_{0}(\tau) P_{i \tau-1 / 4}\left(\cos \beta_{0}\right)=\overline{D_{0}}(\tau) \quad(0<\tau<\infty)
\end{gather*}
$$

Example. We consider the elastic equilibrium of a hyperboloid of revolution of one sheet under the action of a concentrated axial force P, situated at the center of symmetry and having the boundary $\beta=\beta_{0}$ rigidly fixed. We divide the components of the displacement vector into two terms

$$
\begin{equation*}
u_{\phi}=u_{p 0}-u_{\rho 1}, \quad w=w_{0}-w_{1} \tag{4.3}
\end{equation*}
$$

Here $u_{0_{0}}$ and w_{0} are displacements created by such a force in the unbounded space [6]

$$
\begin{equation*}
u_{\rho 0}=\frac{Q \rho z}{R^{8}}, \quad w_{0}=Q\left(\frac{z^{2}}{R^{3}}+\frac{3-4 \mu}{R}\right), \quad Q=\frac{\rho}{16 \pi \sigma(1-\mu)}, \quad R=\sqrt{\rho^{2}+\sigma^{3}} \tag{4.4}
\end{equation*}
$$

The displacements $u_{\rho_{1}}, w_{1}$ must satisfy Eq. (1.1) for the boundary conditions $\beta=\beta_{0}$

$$
\begin{gather*}
u_{\rho 1}=A_{0}(\alpha)=\frac{Q}{c} \frac{\operatorname{ch} \alpha \sin \beta_{n} \operatorname{sh} \alpha \cos \beta_{0}}{\left(\sin ^{2} \alpha+\sin ^{2} \beta_{0}\right)^{1 / 2}} \tag{4.5}\\
w_{1}=D_{0}(\alpha)=\frac{Q}{c}\left[\frac{\operatorname{sh}^{2} \alpha \cos ^{2} \beta_{n}}{\left(\operatorname{sh}^{2} \alpha+\sin ^{2} \beta_{0}\right)^{2 / 2}}+\frac{3-4 \mu}{\left(\sin ^{2} \alpha+\sin ^{2} \beta_{0}\right)^{1 / 2}}\right]
\end{gather*}
$$

To find the functions $A_{0}(\tau), D_{0}(\tau)$ we make use of the expansion [5]

$$
\begin{align*}
& \frac{e}{\pi}=\frac{1}{\left(\operatorname{sh}^{2} \alpha+\sin ^{2} \beta_{0}\right)^{1 / 2}}=\pi \int_{0}^{\infty} \frac{\tau \operatorname{th} \pi \tau}{\operatorname{ch}^{2} \pi \tau} P_{i \tau-1 / 2}(0) \times \\
& \times\left[P_{i \tau-1 / 2}\left(\cos \beta_{0}\right)+P_{i \tau-1 / 2}\left(-\cos \beta_{0}\right)\right] \varphi_{i \tau-1 / 2}(\operatorname{sh} \alpha) d \tau \tag{4.6}
\end{align*}
$$

Differentiating (4.0) with respect to the parameters α and β_{n} and adding the obtained expansions with the corresponding coefficients, we obtain

$$
\begin{align*}
& A_{1}(x)=\int_{n}^{\infty} \bar{I}_{0^{\prime}}(\tau) Y_{i \tau-1 / 2}^{1}(\operatorname{sln} x) i \tau \tag{4.7}\\
& \operatorname{An}^{\prime}(r)=\frac{\pi Q}{c} \sin 2 \beta_{0} \frac{\tau\left(\tau^{2}-\cdots 1 / 1\right) t h \pi \tau}{\left(h^{2} \tau \tau\right.} P_{i:-1,2}(0)\left[P_{i \tau-1 / 2}\left(\cos \beta_{0}\right)+P_{i \tau-1 / 2}\left(-\cos \beta_{0}\right)\right] \\
& D_{0}(x)=\sum_{i}^{\Gamma} \bar{D}_{0}^{\prime}(r) f_{i=-1 / 2}(\operatorname{sh} \alpha) d \tau \tag{4.8}\\
& D_{n^{\prime}}(\tau)=\frac{\partial \tau Q}{c} \frac{\tau \operatorname{th} \pi \tau}{\operatorname{ch}^{2} \pi \tau} P_{i=-1,2}(\hat{0})\left\{\left(3-4 \mu+\cos ^{2} \beta_{n}\right) \times\right. \\
& \cdots\left[P_{i=-1 / 2}\left(\cos 3_{0}\right) \div P_{i=-1 / 2}(-\cos 3,3)\right]- \\
& \left.-1 / 2 \sin 23\left(\sigma^{2}+1 / 4\right)\left\{P_{i \tau-1 / 2}^{-1}\left(\cos \beta_{0}\right)-P_{i:-1 / 2}^{-1}\left(-\cos \beta_{0}\right)\right]\right\}
\end{align*}
$$

The displacements u_{r}, w_{1} at the boundary $\beta=\beta_{0}$ can be represented in the form of the expansions (4.1). The coefficients $b_{n}(\tau)$ and $c_{n}(\tau)$ are determined from the system of equations (4.2), where \bar{i}_{0} ' $\left(\tau\right.$ ' and $\bar{D}_{0}^{\prime}{ }^{\prime}(\tau)$ are given by Eqs. (4.7), (4. 8).

The author expresses his thanks to N. N. Lebedev and Ia.S. Ufliand for advice during discussions on the paper.

BIBLIOGRAPHY

1. Savin G.N. and Podil'chuk Iu.N., Deformation of an elastic hyperboloid of revolution of two sheets. Prikl. Meh., Vol. 5, No. 2, 1969.
2. Lebedev N. N. and Skal'skaia I. P., Integral expansion of an arbitrary function in terms of spherical functions. PMM Vol. 30, No. 2, 1966.
3. Lebedev N. N. and skal'skaia I. P.. Expansion of an arbitrary function into an integral in terms of associated spherical functions. PMM, Vol. 32, No. 3, 1969.
4. Lebedev N. N., Skal'skaia I. P. and Ufliand Ia. S., Problems of mathematical physics. (English translation). Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1905.
5. Lebedev N. N. and skal'skaia I. P., Some boundary value problems of mathematical physics and of the theory of elasticity for a hyperboloid of revolution of one sheet. PMiM, Vol. 30, No. 5, 1966.
6. Ufliand Ia. S.. Integral transforms in problems of the theory of elasticity. Leningrad, "Nauka", 1968.
